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Abstract

Attribution methods are primarily designed to study the distribution of input com-
ponent contributions to individual model predictions. However, some research
applications require a summary of attribution patterns across the entire dataset to
facilitate the interpretability of the scrutinized models. In this paper, we present a
new method called Integrated Gradient Correlation (IGC) that relates dataset-wise
attributions to a model prediction score and enables region-specific analysis by a
direct summation over associated components. We demonstrate our method on
scalar predictions with the study of image feature representation in the brain from
fMRI neural signals and the estimation of neural population receptive fields (NSD
dataset), as well as on categorical predictions with the investigation of handwritten
digit recognition (MNIST dataset). The resulting IGC attributions show selec-
tive patterns, revealing underlying model strategies coherent with their respective
objectives.

1 Motivation

Existing attribution methods study the distribution of input component contributions to individual
model predictions. Here, we investigate the problem of summarizing these attributions at a dataset
level. We particularly search for a method fulfilling the interpretability requirements of some modeling
scenarios, e.g. Where a specific image feature is represented in the visual cortex of the human brain?,
What is the receptive field of a population of neurons?, or What is the model recognition strategy of
handwritten digits? (see Section.4 for details). These examples have in common that, beyond the
need for models making accurate predictions, they call for the exposition of which input components
are responsible for achieving the overall task, and not specific entries.

The implicit aspect of these scenarios is thus a stable localization of input information across the
dataset. For instance, with fMRI (functional magnetic resonance imaging) signals, each input
voxel/vertex represents an invariant brain area, covering a population of neurons. On the other
hand, in the context of image content classification, a dataset-wise attribution method would not be
pertinent: e.g. a cat can appear anywhere in an image while still accurately triggering the cat class.

Some research fields, such as neuroscience, heavily rely on linear or multilinear models to straightfor-
wardly associate prediction scores with input components. Modelers overcome inherent limitations
with linearized data, based on hand-crafted nonlinear preprocessings. Although legitimate, such an
approach is unlikely to produce perfect linear mappings. Only deep models could exploit nonlinear
and multiscale interactions without a priori data domain adaptation. However, the lack of dataset-wise
summary techniques leaves deep models with an interpretability issue.
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Our new framework is therefore designed to be easily integrated in research activities and transparently
used in place of linear regression analysis. To do so, it must fulfill requirements expressed in Naselaris
et al. [20] with the following series of questions: “Does an input region of interest (ROI), contain
information about some specific set of output features? Are there specific ROIs that contain relatively
more information about a specific set of features? Are there specific features that are preferentially
represented by a single ROI?” We then identify three main specifications: 1) a dataset-wise attribution
method must permit a flexible definition of ROIs; 2) relative ROI attribution levels must allow
pertinent comparisons; 3) dataset-wise attributions must enable comparisons between different
features, and implicitly for identical features, but through different models.

1.1 General modelling context

We define a model as a function f : Rm → R, predicting a random variable y ∈ R from a random
vector x ∈ Rm. This model is trained with n i.i.d pairs of a dataset D, so that (x, y) ∼ D =
{(xi, yi)}ni=1. f is also supposed to be a deep network optimized via gradient back-propagation, so
that f is fully differentiable.1

2 Attribution methods for individual predictions

Available techniques for individual predictions arose from different research domains. For instance,
the Shapley Value [2, 24], originated from cooperative game theory, was designed to address cost/gain
sharing problems between players w.r.t their contributions to the outcome. Modern variants [17, 27]
try to reduce the inherent computational cost. However, a method like Baseline Shapley (BS) still
requires successive activations of each input component to measure associated contribution. In
addition, this operation must be repeated several times with different random sequences of activated
components. Such an approach is therefore not suited for large input dimensionalities.

More recently, image content recognition models prompted the development of methods to visualize
pixel arrangements responsible for a classification decision. Relying on neural networks, these
models are differentiable and led to techniques exploiting gradient back-propagation to reduce the
computational cost. Nevertheless, naive gradient computations encounter issues with activation
functions such as ReLU, as it back-propagates zero gradients for negative inputs. Consequently,
methods like GradCAM [5, 23], LIME [22], DeepLift [25], or LRP [4] decided to operate architectural
tweaks in models to avoid attribution shortcomings.

Another alternative to prevent spurious gradients is Integrated Gradients (IG) [28]. The idea is to
aggregate the gradients of linearly interpolated inputs, from a baseline to the input under scrutiny (see
Eq.9 for details). This way, even if some input components receive zero gradients, their comparison
with possibly non-zero baseline gradients reveals more correct contributions. In addition, IG can
be thought as a path method like BS. However, IG is not limited to the evaluation of all edges of a
hypercube of m-dimension. IG can follow the shortest line from the baseline to the input, with all
component attributions updated at once for few forward/backward passes through the model. IG is
therefore quicker to compute than BS by several folds. Although popular, IG still exhibits unresolved
issues, such as the optimality of selected paths [11, 12] or the choice of the most appropriate
baseline[16, 29]. On this particular point, we favor the random baseline approach for its genericity
(see below).

2.1 Definition

We define an attribution method as a function gi,j providing a contribution value for the j ∈ [1,m]
component of the input i ∈ [1, n]. This function takes for arguments a model f and an input random
vector x. Depending upon the method, an optional baseline x̄ ∈ Rm may be required. x̄ is similar
to x in terms of dimensionality, but it can be arbitrarily set to any value. For instance, x̄ = 0 can
simulate the least informational input in many cases, e.g. a black image.

However, defining a relevant baseline is difficult in some scenarios. For example, the activity of the
brain in a resting state is rarely flat to zero. In such situations, we can turn the baseline into a random

1Actually, f has to be differentiable almost everywhere. See Sundararajan et al. [28] for more details.
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vector x̄ sampled from the dataset D itself, and further consolidate attributions by taking the expected
value of the different results obtained with multiple baselines. Then, we write:

gi,j(f,x, x̄) = Ex̄∼D[gi,j(f,x, x̄k)] (1)

As random baseline methods are generalizations of single and non-baseline ones, we assume this
variant in the following manuscript.

2.2 Axioms

With a careful axiomatization, Sundararajan et al. [28][27] clarified the categorization of attribution
methods by revealing individual benefits and shortcomings. Among investigated properties, two of
them are particularly important in the description of our method (see Section.3), and we describe
them briefly.

Completeness In a cost/gain sharing context, completeness, also denominated efficiency, refers to
the intuitive idea that the sum of all contributions must be equal to the cost/gain under scrutiny. More
generally, it means that the sum of all component attributions must reflect the sign and the magnitude
of model predictions, so that:

gi(f,x, x̄) =

m∑
j=1

gi,j(f,x, x̄) = f(x)− f(x̄) (2)

In the random baseline scenario, it becomes:

gi(f,x, x̄) =

m∑
j=1

gi,j(f,x, x̄) = f(x)− µf(x̄) (3)

with µf(x̄) the mean of baseline model predictions (see Appendix.A.1 for a complete development).

Implementation invariance Implementation invariance refers to the fact that two functionally
equivalent models (i.e. exhibiting similar input/output behaviors), but with different architectures (e.g.
number and type of layers, or activation functions), should have identical attributions. For instance,
attribution methods that require low-level modifications in models depending on selected activation
functions, such as DeepLIFT [25], break this axiom. Moreover, beyond the inherent difficulty to
implement this type of method, the status of implied architectural changes becomes unclear when
attempting to explain the default behaviors of models.

3 Dataset-wise attribution methods

We consider dataset-wise attribution methods as an extension to classical methods for individual
predictions. As a result, it can be formally written as a function hj (w.r.t. each j ∈ [1,m] component),
taking as argument an attribution method gi,j , a model f , an input x, and a baseline x̄.

Additive property. In order to fulfill first two interpretability requirements expressed earlier,
hj(gi,j , f,x, x̄) must be easily aggregated over ROIs. One possibility is to consider attribution values
as a distribution over input components located in the ROI under scrutiny. However, the choice of an
appropriate global value to report is difficult. For instance, in the context of brain data, we could think
that information useful for a task is processed only by few neurons so that the maximum value would
be more appropriate than the mean value. As a counterpart, such values would become very sensitive
to outliers of noisy acquisitions. Therefore, we decide to enforce a stronger constraint. Summaries of
attributions over ROIs must be obtained by a simple summation. So, for any ROI R, we want:

hR(gi,j , f,x, x̄) =
∑
j∈R

hj(gi,j , f,x, x̄) (4)

3



Completeness to a model prediction score. The third requirement is to be able to compare dataset-
wise attributions between different features, as well as identical features through different models.
Consequently, dataset-wise attribution methods must first inherit the implementation invariance
property from its supporting attribution method for individual predictions gi,j .2 Secondly, the total
attribution over input components must be related to a prediction score h of the model. The true
output y is then required as a parameter for h (and hj). By extension to Eq.4, we write:

h(gi,j , f,x, x̄, y) =
m∑
j=1

hj(gi,j , f,x, x̄, y) (5)

3.1 Correlation-based dataset-wise attribution methods

We choose to use the correlation between predicted outputs f(x) and true outputs y as the model
prediction score h. So, by definition:

h = ρf(x),y =
E(x,y)∼D[(f(xi)− µf(x))(yi − µy)]

σf(x)σy
(6)

with µf(x), µy, σf(x), and σy respective means and standard deviations of f(x) and y. To further
develop this expression and introduce gi,j , we reduce the possible spectrum of attribution methods
for individual predictions to ones satisfying completeness (see Eq.3). Then:

h =
E(x,y)∼D[(

∑m
j=1 gi,j(f,xi, x̄) + µf(x̄) − µf(x))(yi − µy)]

σf(x)σy

=
E(x,y)∼D[

∑m
j=1 gi,j(f,xi, x̄)× (yi − µy)]

σf(x)σy
+

Ey∼D[(µf(x̄) − µf(x))(yi − µy)]

σf(x)σy

=

m∑
j=1

E(x,y)∼D[gi,j(f,xi, x̄)× (yi − µy)]

σf(x)σy
+
(((((((((((((((µf(x̄) − µf(x))(Ey∼D[yi]− µy)

σf(x)σy

(7)

Consequently, correlation-based dataset-wise attribution methods are defined as:

hj(gi,j , f,x, x̄, y) =
1

σf(x)σy
E(x,y)∼D

[
gi,j(f,xi, x̄)× (yi − µy)

]
(8)

3.2 Supporting attribution method for individual predictions

From the above development, supporting attribution method gi,j must satisfy completeness and
implementation invariance axioms, described in Subsection.2.2. As a result, we have the choice
between path methods like Baseline Shapley [6, 17, 27] and Integrated Gradients [28]. Each technique
provides different attributions since they take different paths from baselines to inputs. However, our
empirical results with BS do not show significant differences from IG (see Appendix.A.3). Then,
because of BS expensive computational cost, we recommend the use of IG in the general case.
Consequently, we call our dataset-wise attribution method: Integrated Gradient Correlation (IGC).

IG is originally defined with an integral, but Sundararajan et al. [28] propose to use in practice its
Riemman approximation with few discrete s steps:

gi,j(f,x, x̄) ≈
(xj − x̄j)

s

s∑
t=1

∂f
(
x̄+ t

s (x− x̄)
)

∂xj
(9)

2We empirically demonstrate the relative independence of our IGC results upon architectural changes in
Appendix.A.2.
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Figure 1: Panel a displays an image sampled from the NSD dataset, and panel b shows corresponding
fMRI activation maps for left and right hemispheres. These surface-based fMRI data are projections
from volumetric acquisition to an average brain space (fsaverage), limited to the visual cortex. Per
vertex activations over the dataset are standardized per subjects.

3.3 IGC with categorical distributions

The present method is primarily designed for models predicting scalars. However, some modeling
scenarios involve the prediction of random variables ruled by categorical distributions with K
categories. Usually expressed as one-hot vectors, models are then actually predicting probabilities
pk for k ∈ [1,K]. A prediction score based on the correlation between pk and corresponding true
one-hot vector components is not the most appropriate, but it proved to be effective in practice (see
Subsection.4.3). In addition, this setup allows the computation of dataset-wise attributions w.r.t. each
class independently.

4 Applications

Integrated Gradient Correlation is applicable to a diversity of modeling scenarios. Here, we present
a decoding model of fMRI data for investigating the representation of image statistics in the brain.
We also introduce an encoding model, estimating the receptive field of a population of neurons.
These two examples rely on scalar prediction, so we further explore a handwritten digit recognition
model to demonstrate IGC on categorical predictions. For information, all presented IGC results use
supporting IG values computed with 32 random baselines and 32 interpolation steps.

4.1 Representation of image statistics in the brain

With fMRI, the brain activity is measured through the proxy of the blood oxygenation level. This
intermediary is relatively delayed from underlying electric neural activity but provides high-resolution
activation maps. This technique is widely used in neuroscience.

The recent publicly available Natural Scene Dataset [1, 9] (NSD dataset) has been designed to be
large enough to enable machine learning inquiries. It offers fMRI data for >70k distinct images,
acquired during a long-term recognition task with 8 subjects over one year. Selected images come
from the COCO dataset [15] (see Fig.1a). The fMRI data are initially volume-based, with brain
hemispheres discretized as voxels, but they can also be projected on the surface of the brain gray
matter, which is a convoluted layer where most activations happen. As result, such a surface is
easier to map to an average brain morphology shared by all participants (the fsaverage template of
FreeSurfer software) and enable inter-subject data aggregation. Here, we focus on left and right
visual cortex, i.e. 2 graphs of nearly 20k vertices each (see Fig.1b).

For this first example, we build a model predicting two simple image statistics from fMRI data.
Selected features are globally computed on gray-scaled images: luminance contrast (i.e. standard
deviation) and 1/f slope value. The first statistic is perhaps the most studied image variable in vision
science whereas the second summarizes spatial frequency distribution and proved to be relevant to
visual perception [8, 30, 31]. The slope refers to the decreasing intensities of higher spatial frequencies
of natural images. Our model is a vanilla multilayer perceptron (6 layers) with batch-normalization
[10] and Mish activation functions [19]. Despite the morphological mapping to an average brain, the
functional behavior of each vertex may differ from one subject to another. Therefore, besides fMRI
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Figure 2: IGC maps associated with the prediction of image luminance contrast (panel a) and 1/f
slope (panel b) from fMRI data. IGC maps and outlines of early visual ROIs, correspond to the
subject 1 of the NSD dataset.
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Figure 3: ROI-based summary of IGC attributions associated with the prediction of image luminance
contrast and 1/f slope from fMRI data. Error bars reflect inter-subject variability (1 SD).

data, we also provide a subject ID to the model. The trained network achieves a correlation of 0.56
for the luminance contrast and 0.59 for 1/f slope.

Fig.2 shows resulting IGC maps for the first subject. In overlay, we display V1 to V4 ROIs that
constitute the beginning of the visual pathway in the brain. Early convolutional blocks of deep
image content recognition models, such as AlexNet [13] or VGG [26] share some arguable degree
of similarity with these early visual ROIs [7, 21, 35]. So, for the luminance contrast in Fig.2a,
we observe that V1 contributions are strongly positive (in red), while V2, V3 and V4 attributions
appear negative (in blue). On the other hand, Fig.2b displays more diffuse patterns for 1/f slope, that
especially occur beyond V1 to V4 ROIs.
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vertex 1 vertex 2 vertex 3 vertex 4

pRF (1 SD, traditionnal method)

Figure 4: pRF estimation from IGC maps associated with the prediction of brain activity (fMRI
data) from image stimuli. Selected vertices are located in V1 and correspond to the subject 1 of the
NSD dataset. IGC maps are compared with the pRF computed with the traditional approach (dotted
circles). For legibility, IGC maps have been downscaled by a local summation of pixels.

Due to the additive property of IGC attributions (see Eq.4), a more quantitative analysis is possible
by a direct summation over ROIs. Then, Fig.3 confirms previously observed trends. Nonetheless,
how to interpret negative attributions found in luminance contrast results? All IGC entries sum up to
the overall model correlation performance, so we may think that excluding V2 and V3 ROIs from the
model could produce higher performance. However, in this model we predict scalars. So, inputs that
systematically negatively contribute to the prediction should rather be understood as an adjusting
mechanism, balancing possibly overestimated scalar magnitude in other positive regions. Therefore,
V2 and V3 probably serve as counterbalances to V1, which provides most of the luminance contrast
estimation of entire images. The literature indicates that neurons with large receptive fields and
associated with the peripheral vision are already present in V1, so the strategy revealed by our method
seems plausible to reflect real neural mechanisms. Another aspect making us confident about IGC
findings, is that higher-level brain areas dedicated to bodies and places appear more relevant to the
task than words and faces ROIs.

Concerning 1/f slope, IGC demonstrates a contrasting attribution distribution over the visual pathway.
Fig.3 presents a more even use of all areas, with a preference for higher-level ROIs. This distinct
strategy is in fact pertinent for a statistic summarizing spatial frequencies because the hierarchical
processing of multiscale information is an inherent characteristic of our complete visual system.

4.2 Population receptive field

Neurons in early visual areas have been proven to be spatially specialized [3, 18, 32, 33, 34].
Hierarchically folded repetitions of the visual field in the brain is even what enables the definition of
V1 to V4 ROIs. With a long history in neuroscience, this functional identification of brain regions
has been addressed by specific methods that require dedicated fMRI acquisitions and traditional
parameter optimizations.

In this second example, we propose to use our method on the NSD dataset to compute the population
receptive field (pRF), or the summed responsible area in an image covered by a group of neurons. To
this end, we build a simple model predicting fMRI data from images. It consists of five convolution
layers, followed by two fully connected layers. We use batch-normalization and Mish activation
functions. Images are downscaled to 128 pixels, and for similar reasons as the model described
above, we concatenate a subject ID (encoded by one additional layer) to the input of the first linear
layer. The model is trained to predict fMRI activations of all vertices, but for legibility, we limit our
investigations to four representative ones, located in V1. The correlations between predictions and
true activations are respectively 0.34, 0.45, 0.22, and 0.63.

Fig.4 shows that resulting IGC maps give a direct visualization of the pRF associated with each
vertex. In addition, they are in coherence with traditional pRF provided by the NSD dataset (dotted
circles).3 They are not completely overlapped, but traditional pRF must not be considered as the
ground truth. Their computation involves an arbitrary luminance definition, some local contrast

3pRF are usually modeled by 2-dimensional Gaussian distributions and reported with circles of radius 1 SD.
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Figure 5: Integrated Gradients maps of MNIST samples w.r.t. all possible digit classes: for 0-9
samples in panel a, and ten different 4 samples in panel b.

−0.02 0.00 0.02 mean digit high difference probability

Figure 6: IGC maps for the MNIST dataset w.r.t. all possible digit classes. Dotted lines indicate mean
digit contours (level is set to 80% of pixel values CDF). Blue solid lines show areas of pixels with a
high probability to be different from other digit classes (level is set to 0.5).

approximations, and several uncertain optimization steps. In this sense, our method is more generic
and straightforward. Nonetheless, attesting of a potential better accuracy of the IGC approach requires
further investigations, left for future works.

4.3 Recognition strategy of handwritten digits

Finally, we illustrate our method with the prediction of a categorical distribution. Specifically, we
investigate the recognition strategy of handwritten digits from the MNIST dataset [14]. Our model
possesses two convolution layers, followed by five fully connected layers. It uses batch-normalization
and Mish activation functions. The accuracy of the trained model is over 99%.

As described in Subsection.3.3, the model output probabilities pk with k ∈ [0, 9], and attributions
are then computed per class. In Fig.5, we show Integrated Gradients of sampled digits w.r.t. all
possible classes; for 0-9 samples in panel a, and 10 different 4 samples in panel b. These examples
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show certain patterns, like a strong positive attribution in between the top branches of the 4, but
exact positions differ from one another. In addition, how to combine attributions (mostly negative)
received for digits of other categories? This is exactly where the IGC summary over the whole dataset
becomes useful.

In Fig.6, we remark that high IGC attributions are coherent with mean digit contours (dotted lines),
but the critical locations are sometimes surprisingly outside digit bodies (e.g. in the center of 0, or
inside the angle of 7). To better understand the logic behind it, we also plot with blue solid lines, the
locations of pixels with a high probability to be different from other digit classes (level is set to 0.5).
Many high IGC attributions are aligned with these areas (e.g. for 6 and 8), but they are not limited to.
It thus demonstrates that the recognition model integrates conditional inter-pixel mechanisms that go
beyond a naive resolution of the task.

5 Conclusion

The main contribution of this paper is the definition of a dataset-wise attribution method, Integrated
Gradient Correlation, that improves the interpretability of deep neural networks for research scenarios
where the localization of input information is stable across the dataset. Resulting summarizing
maps show selective attribution patterns, that reveal underlying model strategies coherent with their
respective objectives.

A secondary contribution is that we introduced IGC as a particular case of dataset-wise attribution
methods, generically defined by desirable characteristics, i.e. ROI attributions computed as the sum
of associated components, and a total attribution related to a prediction score of the model under
scrutiny.

In particular, our method uses correlation as a versatile prediction score, and Integrated Gradients as
its supporting attribution method for individual predictions. IGC is therefore easy to implement, fast
to compute, and generic enough to be applicable to a wide range of model architectures and data.
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A Appendix

A.1 Random baseline completeness

This is the development of the completeness axiom (Eq.2), employed with random baselines (Eq.1).

gi(f,x, x̄) =

m∑
j=1

Ex̄∼D[gi,j(f,x, x̄k)]

= Ex̄∼D
[ m∑
j=1

gi,j(f,x, x̄k)
]

= Ex̄∼D[f(x)− f(x̄k)]

= f(x)− Ex̄∼D[f(x̄k)]

= f(x)− µf(x̄)

(A10)

A.2 Implementation invariance

Our method inherits from IG the implementation invariance axiom, and we investigate the robustness
of IGC results upon architectural changes for models with comparable performance. Unlike the model
described in Subsection.4.3 (with results in Fig.6), the model of Fig.A7a does not have convolution
layers (>97% accuracy), and the model of Fig.A7b has ReLU activation functions instead of Mish
(>99% accuracy). The absence of convolution layers seems to allow slightly sharper local changes of
IGC attributions, while ReLU activation functions let appear some checkerboard artifacts. However,
in both cases, observed differences are minor and do not impact overall attribution patterns.

A.3 Baseline Shapley Correlation

Fig.A8 shows the results of a correlation-based dataset-wise attribution method like IGC, but built
upon Baseline Shapley instead of Integrated Gradients. Baseline Shapley is slow to compute, so
for practical reasons, we used only 10% of MNIST validation images, i.e. 1k images. Nonetheless,
difference from IGC maps in Fig.6 are already negligible.
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Figure A7: IGC maps for the MNIST dataset w.r.t. all possible digit classes. Employed models are
a multilayer perceptron with Mish activation functions in panel a, and a convolutional model with
ReLU activation functions in panel b. See caption of Fig.6 for details.
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Figure A8: Baseline Shapley Correlation maps for the MNIST dataset w.r.t. all possible digit classes.
See caption of Fig.6 for details.
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